Answer: a) x= 68, b) 108°, c) 72°, d) 255°.
Explanation:
Since we have given that
The interior angles of hexagon:
(2x+17), (3x - 25), (2x+49), (x+40), (4x-17) and (3x - 4).
So, it becomes :
![2x+17+3x-25+2x+49+x+40+4x-17+3x-4=1080\\\\15x+60=1080\\\\15x=1080-60\\\\15x=1020\\\\x=68](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ho2q2hkqitdwldto6yqrxj2qnbt5t82dip.png)
ii. Find the smallest interior angle of the quadrilateral.
![x+40=68+40=108^\circ](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8v32g144xt0hprwm3miukrfyj6cg7hht31.png)
iii. Find the largest exterior angle of the quadrilateral.
![180-108=72^\circ](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k5jm71vqa2u4alsptx5oke62xgjd32y6vz.png)
iv. Find the largest interior angle of the quadrilateral.
![4x-17=4* 68-17=255^\circ](https://img.qammunity.org/2021/formulas/mathematics/middle-school/aumwycosyeaswvfbly1mp5jw5s5oyh8xly.png)
Hence, a) x= 68, b) 108°, c) 72°, d) 255°.