49.2k views
0 votes
The pH at 25 °C of an aqueous solution of the sodium salt of p-monochlorophenol (NaC6H4ClO) is 11.05. Calculate the concentration of C6H4ClO- in this solution, in moles per liter. Ka for HC6H4ClO is equal to 6.6×10-10.

User Cmm User
by
8.7k points

1 Answer

6 votes

Answer:

Approximately
8.3 * 10^(-2)\; \rm mol \cdot L^(-1).

Step-by-step explanation:

The
K_a in this question refers the dissociation equilibrium of
\rm HC_6H_4ClO as an acid:


\rm HC_6H_4ClO\, (aq) \rightleftharpoons H^(+) \, (aq) + C_6H_4ClO^(-)\, (aq).


\displaystyle K_a\left(\mathrm{HC_6H_4ClO}\right) = \frac{\left[\mathrm{H^(+)}\right] \cdot \left[\mathrm{C_6H_4ClO^(-)}\right]}{\left[\mathrm{HC_6H_4ClO}\right]}.

However, the question also states that the solution here has a
\rm pH of
11.05, which means that this solution is basic. In basic solutions at
\rm 25\;^\circ C, the concentration of
\rm H^(+) ions is considerably small (typically less than
10^(-7)\;\rm mol \cdot L^(-1).) Therefore, it is likely not very appropriate to use an equilibrium involving the concentration of
\rm H^(+) ions.

Here's the workaround: note that
\rm C_6H_4ClO^(-)\, (aq) is the conjugate base of the weak acid
\rm HC_6H_4ClO\, (aq). Therefore, when
\rm C_6H_4ClO^(-)\, (aq) dissociates in water as a base, its
K_b would be equal to
\displaystyle (K_w)/(K_a) \approx (10^(-14))/(K_a). (
K_w is the self-ionization constant of water.
K_w \approx 10^(-14) at
\rm 25\;^\circ C.)

In other words,


\begin{aligned} & K_b\left(\mathrm{C_6H_4ClO^(-)}\right) \\ &= \frac{K_w}{K_a\left(\mathrm{HC_6H_4ClO}\right)} \\ &\approx (10^(-14))/(6.6 * 10^(-10)) \\ & \approx 1.51515 * 10^(-5)\end{aligned}.

And that
K_b value corresponds to the equilibrium:


\rm C_6H_4ClO^(-)\, (aq) + H_2O\, (l) \rightleftharpoons HC_6H_4ClO\, (aq) + OH^(-)\, (aq).


\displaystyle K_b\left(\mathrm{C_6H_4ClO^(-)}\right) = \frac{\left[\mathrm{HC_6H_4ClO}\right]\cdot \left[\mathrm{OH^(-)}\right]}{\left[\mathrm{C_6H_4ClO^(-)}\right]}.

The value of
K_b has already been found.

The
\rm OH^(-) concentration of this solution can be found from its
\rm pH value:


\begin{aligned}& \left[\mathrm{OH^(-)}\right] \\ &= \frac{K_w}{\left[\mathrm{H}^(+)\right]} \\ & = \frac{K_w}{10^{-\mathrm{pH}}} \\ &\approx (10^(-14))/(10^(-11.05)) \\ &\approx 1.1220 * 10^(-3)\; \rm mol\cdot L^(-1) \end{aligned}.

To determine the concentration of
\left[\mathrm{HC_6H_4ClO}\right], consider the following table:


\begin{array}{cccccc}\textbf{R} &\rm C_6H_4ClO^(-)\, (aq) & \rm + H_2O\, (l) \rightleftharpoons & \rm HC_6H_4ClO\, (aq) & + & \rm OH^(-)\, (aq) \\ \textbf{I} & (?) & \\ \textbf{C} & -x & & + x& & +x \\ \textbf{E} & (?) - x & & x & & x\end{array}

Before hydrolysis, the concentration of both
\mathrm{HC_6H_4ClO} and
\rm OH^(-) are approximately zero. Refer to the chemical equation. The coefficient of
\mathrm{HC_6H_4ClO} and
\mathrm{HC_6H_4ClO} are the same. As a result, this equilibrium will produce
\rm OH^(-) and
\mathrm{HC_6H_4ClO} at the exact same rate. Therefore, at equilibrium,
\left[\mathrm{HC_6H_4ClO}\right] \approx \left[\mathrm{OH^(-)}\right] \approx 1.1220 * 10^(-3)\; \rm mol\cdot L^(-1).

Calculate the equilibrium concentration of
\left[\mathrm{C_6H_4ClO^(-)}\right] from
K_b\left(\mathrm{C_6H_4ClO^(-)}\right):


\begin{aligned} & \left[\mathrm{C_6H_4ClO^(-)}\right] \\ &= \frac{\left[\mathrm{HC_6H_4ClO}\right]\cdot \left[\mathrm{OH^(-)}\right]}{K_b}\\&\approx (\left(1.1220 * 10^(-3)\right) * \left(1.1220 * 10^(-3)\right))/(1.51515* 10^(-5))\; \rm mol \cdot L^(-1) \\ &\approx 8.3 * 10^(-2)\; \rm mol \cdot L^(-1)\end{aligned}.

User Tarif Chakder
by
8.1k points