Answer:
![|M_y| = 170.82 \ N.mm](https://img.qammunity.org/2021/formulas/physics/middle-school/cecrczos240gu0hi6qci6s2s5nwosoe5e5.png)
Step-by-step explanation:
From the diagram affixed below completes the question
Now from the diagram; We need to resolve the force at point A into (3) components ; i.e x.y. & z directions which are equivalent to
![F_x \ , F_y \ , F_z](https://img.qammunity.org/2021/formulas/physics/middle-school/ftkxxj3za060piy9bw8wvc9cp823bsqgp5.png)
So;
= positive x axis
Negative y axis
= positive z axis
Then;
![|M_x| = F_y *27-F_z*11 = 77 ----- equation(1) \\ \\ |M_z| = F_y*4 - F_x*11 = 81 ---- equation (2) \\ \\ |M_y| = F_x *27 - F_z *4 = ? ---- equation (3)](https://img.qammunity.org/2021/formulas/physics/middle-school/5l5o31m701s2t6qoewlhdjz0kttiphdb5l.png)
From equation (1); Let's make
the subject of the formula ; then :
![F_y = (77+11F_z)/(27)](https://img.qammunity.org/2021/formulas/physics/middle-school/lttfz9s5s077qveg65v3eup8bt3vtjn8fr.png)
Substituting the value for
into equation (2) ; we have:
![((77+11F_z)/(27))4-F_x*11=81 \\ \\ 11((7+F_z)/(27) ) 4- F_x -11 =81 \\ \\ 28+4 F_z - 27F_x = (81*27)/(11) \\ \\ 4F_z - 27F_x = 198.82 -28 \\ \\ 4F_z - 27F_x = 170.82 \\ \\ Since \ |M_y| = 4F_z-27F_x \\ \\ Then: \\ \\ \\ |M_y| = 170.82 \ N.mm](https://img.qammunity.org/2021/formulas/physics/middle-school/fdz3jx65nxlb8sdli8mv22s65j3a73t2fd.png)