Answer:
Change in momentum of the stone is 3.673 kg.m/s.
Step-by-step explanation:
Given:
Mass of the ball on the horizontal the surface, m = 0.10 kg
Velocity of the ball with which it hits the stone, v = 20 m/s
According to the question it rebounds with 70% of the initial kinetic energy.
We have to find the change in momentum i.e Δp
Before that:
We have to calculate the rebound velocity with which the object rebounds.
Lets say that the rebound velocity be "v1" and KE remaining after the object rebounds be "KE1".
⇒
⇒
![KE_1=0.7* (0.10* (20)^2)/(2)](https://img.qammunity.org/2021/formulas/physics/high-school/u8rxgdj443zxii6nj80o7bojtvdpfweg35.png)
⇒
![KE_1=0.7* (0.10* 400)/(2)](https://img.qammunity.org/2021/formulas/physics/high-school/4li19rdbpso5801cu3p1qx4vjwta0gxz0o.png)
⇒
Joules (J).
Rebound velocity "v1".
⇒
![KE_1=(m(v_1)^2)/(2)](https://img.qammunity.org/2021/formulas/physics/high-school/n85iu1pciqa95et22hu484kbmdsf4rl8b6.png)
⇒
![v_1 = \sqrt{(2KE_1)/(m) }](https://img.qammunity.org/2021/formulas/physics/high-school/4to1p03zqyknirr1tqipu5lczjdhat2hr3.png)
⇒
![v_1 = \sqrt{(2* 14)/(0.10) }](https://img.qammunity.org/2021/formulas/physics/high-school/q6vhiuucyco8hrrxripe5r5rm3kto2jxid.png)
⇒
![v_1=16.73](https://img.qammunity.org/2021/formulas/physics/high-school/ey5iz36jsmspov4xt33nv34r355ekj86s1.png)
⇒
m/s ...as it rebounds.
Change in momentum Δp.
⇒
![\triangle p= m\triangle v](https://img.qammunity.org/2021/formulas/physics/high-school/to89ilbceexqerp3n0t9xex54p07hq79dc.png)
⇒
![\triangle p= 0.10* (20-(-16.73)](https://img.qammunity.org/2021/formulas/physics/high-school/okwsggu85ae8ao2ikaccu4cjol3nv5jv7z.png)
⇒
![\triangle p= 0.10* (20+16.73)](https://img.qammunity.org/2021/formulas/physics/high-school/r83io4rrpv11njjy3iq18n8q4mntsehbga.png)
⇒
![\triangle p= 0.10* (36.73)](https://img.qammunity.org/2021/formulas/physics/high-school/eyi5ew9bx47qz0hy8xc6mafnnrk2r0z9zy.png)
⇒
Kg.m/s
The magnitude of the change in momentum of the stone is 3.673 kg.m/s.