Answer:
Δπ Min = -0.0709
Δπ Max = -0.0535
Explanation:
Here we have
![z=\frac{(\hat{p_(1)}-\hat{p_(2)})-(\mu_(1)-\mu _(2) )}{\sqrt{\frac{\hat{p_(1)}(1-\hat{p_(1)}) }{n_(1)}-\frac{\hat{p_(2)}(1-\hat{p_(2)})}{n_(2)}}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/xa51nl8ygrnhip5036qk3htg0e48yxvtxw.png)
Where:
= 13% = 0.13
= 14% = 0.14
n₁ = 163
n₂ = 160
Therefore, we have;
![z=\frac{(\hat{p_(1)}-\hat{p_(2)})}{\sqrt{\frac{\hat{p_(1)}(1-\hat{p_(1)}) }{n_(1)}-\frac{\hat{p_(2)}(1-\hat{p_(2)})}{n_(2)}}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/2cnrfmki0swx4oxs0m33wkrujkmdyl4gg7.png)
Plugging the values gives
z = -0.263
CI 90% = critical z =
1.644
The minimum difference in true proportion = -0.0709
The maximum difference in true proportion = 0.0535.