Answer:
![(g_(2))/(g_(1)) = (1)/(4)](https://img.qammunity.org/2021/formulas/physics/college/n3qh42tntqb73f54kbukpzskfrvq670dkm.png)
Step-by-step explanation:
The period of the simple pendulum is:
![T = 2\pi\cdot \sqrt{(l)/(g) }](https://img.qammunity.org/2021/formulas/physics/college/k22if14xcwhdvqcvesm3cl3gfwvh0v9pfl.png)
Where:
- Cord length, in m.
- Gravity constant, in
.
Given that the same pendulum is test on each planet, the following relation is formed:
![T_(1)^(2)\cdot g_(1) = T_(2)^(2)\cdot g_(2)](https://img.qammunity.org/2021/formulas/physics/college/cg9w5k512hzhqpqw1csi0rt9vd75y713rf.png)
The ratio of the gravitational constant on planet CornTeen to the gravitational constant on planet Earth is:
![(g_(2))/(g_(1)) = \left((T_(1))/(T_(2)) \right)^(2)](https://img.qammunity.org/2021/formulas/physics/college/tfwo8p6mmd4v1juhcmn1yhvfswg016y1ad.png)
![(g_(2))/(g_(1)) = \left((2\,s)/(4\,s) \right)^(2)](https://img.qammunity.org/2021/formulas/physics/college/4dffcftwt66oygoddb4epqki5ps1r0jy6m.png)
![(g_(2))/(g_(1)) = (1)/(4)](https://img.qammunity.org/2021/formulas/physics/college/n3qh42tntqb73f54kbukpzskfrvq670dkm.png)