152k views
5 votes
After a college football team once again lost a game to their archrival, the alumni association conducted a survey to see if alumni were in favor of firing the coach. A simple random sample of 100 alumni from the population of all living alumni was taken. Sixty-four of the alumni in the sample were in favor of firing the coach. Let p represent the proportion of all living alumni who favored firing the coach. Suppose the alumni association wished to see if the majority of alumni are in favor of firing the coach. To do this they test the hypotheses H0: p = 0.50 versus Ha: p > 0.50.

(A) What is the P-value for this hypothesis test?

1 Answer

5 votes

Final answer:

The P-value for this hypothesis test is 0.0228.

Step-by-step explanation:

To find the P-value for this hypothesis test, we need to calculate the proportion of alumni who favored firing the coach in the sample. Out of 100 alumni, 64 were in favor. So, the sample proportion is 64/100 = 0.64.

Now, we need to calculate the test statistic, which follows a normal distribution. The formula for the test statistic is: z = (p' - p) / sqrt(p * (1-p) / n), where p' is the sample proportion, p is the claimed proportion under the null hypothesis, and n is the sample size.

Plugging in the values, we get: z = (0.64 - 0.50) / sqrt(0.50 * (1-0.50) / 100) = 2.00

The P-value is the probability of observing a test statistic as extreme as 2.00, assuming the null hypothesis is true. We can look up this probability in a standard normal distribution table or use a statistical software. In this case, the P-value is 0.0228.

User Nazar
by
4.5k points