61.9k views
2 votes
Find the perimeter of triangle ABC. Round to the nearest tenth if necessary. A(-3,4),B(4,4)C(1,-3)

User Hongtao
by
5.8k points

1 Answer

6 votes

Answer:


\displaystyle P_(\triangle ABC) \approx 22.7

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Coordinate Planes

  • Coordinates (x, y)

Geometry

Perimeter of a Triangle Formula: P = s₁ + s₂ + s₃

  • s₁ is one side
  • s₂ is 2nd side
  • s₃ is 3rd side

Algebra II

Distance Formula:
\displaystyle d = √((x_2 - x_1)^2 + (y_2 - y_1)^2)

Explanation:

Step 1: Define

Identify.

Vertice A(-3, 4)

Vertice B(4, 4)

Vertice C(1, -3)

Step 2: Find Side Lengths

Simply plug in the 2 coordinates into the distance formula to find distance d.

  1. [Side AB] Substitute in points [Distance Formula]:
    \displaystyle \overline{AB} = √((4 - -3)^2 + (4 - 4)^2)
  2. [Side AB] Evaluate [Order of Operations]:
    \displaystyle \overline{AB} = 7
  3. [Side BC] Substitute in points [Distance Formula]:
    \displaystyle \overline{BC} = √((1 - 4)^2 + (-3 - 4)^2)
  4. [Side BC] Evaluate [Order of Operations]:
    \displaystyle \overline{BC} = √(58)
  5. [Side AC] Substitute in points [Distance Formula]:
    \displaystyle \overline{AC} = √((1 - -3)^2 + (-3 - 4)^2)
  6. [Side AC] Evaluate [Order of Operations]:
    \displaystyle \overline{AC} = √(65)

Step 3: Find Perimeter

  1. Define sides:
    \displaystyle s_1 = \overline{AB} ,\ s_2 = \overline{BC} ,\ s_3 = \overline{AC}
  2. Substitute in variables [Perimeter of a Triangle Formula]:
    \displaystyle P_(\triangle ABC) = \overline{AB} + \overline{BC} + \overline{AC}
  3. Substitute in values:
    \displaystyle P_(\triangle ABC) = 7 + √(58) + √(65)
  4. Simplify:
    \displaystyle P_(\triangle ABC) \approx 22.7
User Dorony
by
6.2k points