Answer:
The value of cosA = (√3)/2 and tanA = 1/√3 or (√3)/3.
Explanation:
Firstly, you have to find the value of adjacent using Pythogoras' Theorem, a² = b²+c² :
Let a = 2, b = 1
2² = 1² + c²
c² = 2² - 1²
= 4 - 1
= 3
c = √3
Now we have found the adjacent so we can find cosA and tanA using Trigonometric function, cosθ = adj./hypo. and tanθ = oppo./adj. :
adj. = √3
oppo. = 1
hypo. 2
cosA = (√3)/2
tanA = 1/√3 OR (√3)/3