208k views
0 votes
12. Find the perimeter of the triangle below:
please help show steps thank you :)


12. Find the perimeter of the triangle below: please help show steps thank you :) ​-example-1

1 Answer

4 votes

Given:

The lengths of the three sides of the triangle are
(3)/(x-4),
(16-x)/(x^(2)-2 x-8) and
(x+5)/(x+2)

We need to determine the perimeter of the triangle.

Perimeter of the triangle:

The perimeter of the triangle can be determined by adding all the three sides.

Thus, we have;


Perimeter=(3)/(x-4)+(16-x)/(x^(2)-2 x-8)+(x+5)/(x+2)

Factoring the term
x^2-2x-8, we get,
(x-4)(x+2)

Substituting, we get;


Perimeter=(3)/(x-4)+(16-x)/((x-4)(x+2))+(x+5)/(x+2)

Taking LCM , we have;


Perimeter=(3(x+2)+16-x+(x+5)(x-4))/((x-4)(x+2))

Simplifying the numerator, we get;


Perimeter=(3x+6+16-x+x^2-4x+5x-20)/((x-4)(x+2))

Adding the like terms in the numerator, we get;


Perimeter=(x^2+3x+2)/((x-4)(x+2))

Factoring the numerator, we get;


Perimeter=((x+2)(x+1))/((x-4)(x+2))

Cancelling the common terms, we have;


Perimeter=(x+1)/(x-4)

Thus, the perimeter of the triangle is
(x+1)/(x-4)

User Connie
by
3.3k points