117k views
5 votes
Find The Zeros Of the function f(x) 3x^4 - 24x

1 Answer

5 votes

Given:

The given function is
f(x)=3x^4-24x

We need to determine the zeros of the function.

Zeros of the function:

The zeros of the function are the values that makes the function's value equal to zero.

The zero of the function can be determined by substituting f(x) = 0 in the function.

Thus, we have;


0=3x^4-24x

Switch sides, we get;


3x^4-24x=0

Let us factor out the common term 3x.

Thus, we have;


3x(x^3-8)=0


3x(x^3-2^3)=0

Using the identity,
x^(3)-y^(3)=(x-y)\left(x^(2)+x y+y^(2)\right), we get;


3 x(x-2)\left(x^(2)+2 x+4\right)=0

Let us solve using the zero factor principle.

Thus, we have;

If
3x=0 then
x=0

If
x-2=0 then
x=2

If
x^2+2x+4=0 then
x=-1+√(3) i, x=-1-√(3) i (solving using the quadratic formula)

Thus, the zeros of the function are
x=0, x=2, x=-1+√(3) i, x=-1-√(3) i

User Nichol
by
5.7k points