Given:
The given function is
![f(x)=3x^4-24x](https://img.qammunity.org/2021/formulas/mathematics/college/8lhwis51jypiyxavw3sdlr7etutpxrfdc1.png)
We need to determine the zeros of the function.
Zeros of the function:
The zeros of the function are the values that makes the function's value equal to zero.
The zero of the function can be determined by substituting f(x) = 0 in the function.
Thus, we have;
![0=3x^4-24x](https://img.qammunity.org/2021/formulas/mathematics/college/udqenpqi8rpbzn04z2v7e5vkfp9cfkb1sk.png)
Switch sides, we get;
![3x^4-24x=0](https://img.qammunity.org/2021/formulas/mathematics/college/eglusimqbrbp68tf16baxg2fidsbclwknh.png)
Let us factor out the common term 3x.
Thus, we have;
![3x(x^3-8)=0](https://img.qammunity.org/2021/formulas/mathematics/college/v7nsgv5o1p9ajjgjdv3yiv4ei0y7hrm4xe.png)
![3x(x^3-2^3)=0](https://img.qammunity.org/2021/formulas/mathematics/college/21b8y7prco1lj8cr7erqsgdhwfiohyf4km.png)
Using the identity,
, we get;
![3 x(x-2)\left(x^(2)+2 x+4\right)=0](https://img.qammunity.org/2021/formulas/mathematics/college/lz8om8wdfb0wri0yk1ha9kr1kjubs7s4pa.png)
Let us solve using the zero factor principle.
Thus, we have;
If
then
![x=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/6enp4x8l6ye502n229t5aopx507rpkpsln.png)
If
then
![x=2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l44oth01qqbnuop6qxtvmqlzuv7kvr7xrb.png)
If
then
(solving using the quadratic formula)
Thus, the zeros of the function are
![x=0, x=2, x=-1+√(3) i, x=-1-√(3) i](https://img.qammunity.org/2021/formulas/mathematics/college/pir7oq1a9yy3onc8w88ijdwej99yn0hqxb.png)