Answer:
The wavelength of he radiation emitted is
![\lambda = 252 \ nm](https://img.qammunity.org/2021/formulas/chemistry/college/pkqtzs6d55ycc2j71k4d6i6itchkegnczz.png)
Step-by-step explanation:
We know that energy needed is given by
![E = (h c)/(\lambda)](https://img.qammunity.org/2021/formulas/chemistry/college/wj3jzeqi4fdm7kh4961l8hbkw817k5w5iy.png)
----- (1)
h = 6.62 ×
J s
c = 3 ×
![10^(8) \ (m)/(s)](https://img.qammunity.org/2021/formulas/chemistry/college/t2x1v0xmi9u6nmpd8wq2olqw41jst6fvlz.png)
E = 786.4 - 310.8 = 475.6
![(KJ)/(mole)](https://img.qammunity.org/2021/formulas/chemistry/college/vb9yi13csll33f10ja7x1c87w0g8phomyg.png)
Total energy
![E = (475.6(10^(3) ))/((6.023)10^(23) )](https://img.qammunity.org/2021/formulas/chemistry/college/tyx4htob1f6f7pdx9e0sbq6jbbf9lvosgh.png)
E = 78.9 ×
J
From equation (1)
![\lambda = (6.626(10^(-34) )3 (10^(8) ))/(78.9 (10^(-20) ))](https://img.qammunity.org/2021/formulas/chemistry/college/gux9fjr6p6djkl14my7pxy2eglfy5js4wi.png)
×
![10^(-7)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jua0yn7vfutesif9esqs0msl6xnsf70wz5.png)
![\lambda = 252 \ nm](https://img.qammunity.org/2021/formulas/chemistry/college/pkqtzs6d55ycc2j71k4d6i6itchkegnczz.png)
Therefore the wavelength of he radiation emitted is
![\lambda = 252 \ nm](https://img.qammunity.org/2021/formulas/chemistry/college/pkqtzs6d55ycc2j71k4d6i6itchkegnczz.png)