219,366 views
3 votes
3 votes
Prove


\small ( \sin(A) - \cos(A) + 1)/(\sin(A) + \cos(A) - 1) = (\cos(A))/(1 - \sin(A) )




Help!!!!!!!!!​

User Indo
by
2.9k points

1 Answer

16 votes
16 votes


( \sin(a) - \cos(a) + 1 )/( \sin(a) + \cos(a) - 1 ) = \\

____________________________________________


( \sin(a) - \cos(a) + 1 )/( \sin(a) + \cos(a) - 1 ) * ( \sin(a) + \cos(a) + 1)/( \sin(a) + \cos(a) + 1 ) =


\frac{ {sin}^(2)(a) + 2 \sin(a) - {cos}^(2) (a) + 1 }{ {sin}^(2)(a) + 2 \sin(a) \cos(a) + {cos}^(2)(a) - 1 } =

_____________________________________________

As you know :


{sin}^(2) (a) + {cos}^(2) (a) = 1

_____________________________________________


\frac{ {sin}^(2) (a) - {cos}^(2)(a) + 2 \sin(a) + 1}{ {sin}^(2) (a) + {cos}^(2)(a) - 1 + 2 \sin(a) \cos(a) } =


\frac{ {sin}^(2)(a) - (1 - {sin}^(2)(a)) + 2 \sin(a) + 1 }{1 - 1 + 2 \sin(a) \cos(a) } =


\frac{ {sin}^(2) (a) + {sin}^(2) (a) - 1 + 1 + 2 \sin(a) }{2 \sin(a) \cos(a) } =


\frac{2 {sin}^(2)(a) + 2 \sin(a) }{2 \sin(a) \cos(a) } =


(2 \sin(a)( \sin(a) + 1) )/(2 \sin(a)( \cos(a) \: ) ) = \\


( \sin(a) + 1)/( \cos(a) ) \\

And we're done...

Take care ♡♡♡♡♡

User ILikeTurtles
by
2.9k points