224k views
4 votes
Evaluate the function
h(x) = x^4 - 3 x^2 + 3 at the given values of the independent variable and simplify.

a. h(-3)
b. h(-1)
c. h(-x)
d. h(3a)

1 Answer

4 votes

Answer:

a. 57

b. 1

c.
h(-x) = x^4 -3x^2 + 3

d.
h(3a) = 81a^4 -27a^2 + 3

Explanation:

The independent variable in the function is
x.

a. When
x = -3:


h(-3) = (-3)^4 - 3(-3)^2 +3\\\\\\h(-3) = 81 -3(9) + 3\\\\\\h(-3) = 81-27+3\\\\\\h(-3) = 57

b. When
x = -1:


h(-1) = (-1)^4 - 3(-1)^2 + 3\\\\\\h(-1) = 1 -3 + 3\\\\\\h(-1) = 1

c. When
x = -x:


h(-x) = (-x)^4 - 3(-x)^2 + 3\\\\\\\h(-x) = x^4 -3x^2 + 3

d. When
x = 3a:


h(3a) = (3a)^4 - 3(3a)^2 + 3\\\\\\h(3a) = 81a^4 - 3(9a^2) + 3\\\\\\h(3a) = 81a^4 -27a^2 + 3

User Yosuke
by
5.4k points