Answer:
AB = 87.71°
BC = 82.42°
Explanation:
your calculations of the angles are correct:
m∠A = 180° - 90° - 20° = 70°
using the sine rule (see attached graphic for reference)
AB / sin ∠C = AC / sin ∠B = BC / sin ∠A
we know AC = 30, substituting the values for ∠A, ∠B and ∠C gives us:
AB / sin 90° = 30 / sin 20° = BC / sin 70°
Considering side AB:
AB / sin 90° = 30 / sin 20°
AB = (30 / sin 20°) x sin 90° = 87.71
Considering side BC:
BC / sin 70° = 30 / sin 20°
BC = ( 30 / sin 20°) x sin 70° = 82.42°
Hope this helps!