199k views
1 vote
The radius of a circle is 3 miles. What is the length of a 45° arc?

2 Answers

4 votes

Answer:The length of the arc is 3​/4 miles.

explanation;

REMEMBER

Step-by-step explanation:The formula for the length of an arc is =m/360*C

where is the arc length, C is the circumference, and m is the measure of the arc in degrees.

The arc's length depends on the arc's measure and the circle's circumference. You already know that the arc's measure is 45°, so find the circle's circumference.

First, find the circumference.

C

= 2​r

= 2​(3) Plug in r=3

= 6​ Multiply

____________________________________________________________

____________________________________________________________

The circumference is 6​ miles.

Now, find the length of the arc.

=C * m/360

= 6​ * 45/360 Plug in C= 6​ and m =45

=3​/4

The length of the arc is 3​/4 miles. <---------Multiply and simplify

so you will get 3/4 after multiplying and simplifying

User Tsm
by
4.8k points
3 votes

Answer:

2.36 miles

Explanation:

radius, r = 3 miles

∅ = 45°

Length of an arc = ∅/360 * 2πr

= 45/360 * 2 * 3.14 * 3

= 2.36 miles

User Ewein
by
4.0k points