Answer:
a)
![P(X \leq 33)=1-P(X>33)= 1- P(X\geq 34) = 1-[P(X=34)+P(X=35)]](https://img.qammunity.org/2021/formulas/mathematics/college/e6znb6b32gcak8tpnf607rcybdp5wg4ems.png)
And we can find the individual probabilities and we got:


And after replace we got:
![P(X \leq 33) = 1-[0.3493+0.2396]= 0.4111](https://img.qammunity.org/2021/formulas/mathematics/college/t4zppwgmxd6yb2del78all0vhj2b2nsm5l.png)
b)

And using the normal standard table or excel we got:

For this case the approximation is not exactly the exact answer but is an approximation, the difference is about 0.4111-0.3022= 0.1089.
Explanation:
Part a
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
Let X the random variable of interest, on this case we now that:
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
And for this case we want this probability:

And we can find this probability with the complement rule:
![P(X \leq 33)=1-P(X>33)= 1- P(X\geq 34) = 1-[P(X=34)+P(X=35)]](https://img.qammunity.org/2021/formulas/mathematics/college/e6znb6b32gcak8tpnf607rcybdp5wg4ems.png)
And we can find the individual probabilities and we got:


And after replace we got:
![P(X \leq 33) = 1-[0.3493+0.2396]= 0.4111](https://img.qammunity.org/2021/formulas/mathematics/college/t4zppwgmxd6yb2del78all0vhj2b2nsm5l.png)
Part b
If we appply the normal approximation the new mean and standard deviation are:
And we want this probability:

We find the z score given by:

And using the normal standard table or excel we got:

For this case the approximation is not exactly the exact answer but is an approximation, the difference is about 0.4111-0.3022= 0.1089.