Arc Length is 1/4th of the circumference .
Explanation:
Here we need to find fraction of the circumference is this arc when An arc subtends a central angle measuring
radians ! Let's find out :
We know that circumference of an arc subtending a central angle of x is :
⇒
![Arc = (Angle)/(360)(2\pi r)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7fdtwxtn8iqixu8490tivi816e7c53xb13.png)
⇒
![Arc = ((\pi)/(2))/(360)(2\pi r)](https://img.qammunity.org/2021/formulas/mathematics/high-school/30h7o13a8cyz5woi2f9zea9rx1qogccsio.png)
⇒
![Arc = (90)/(360)(2\pi r)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9x7auush1fxizhu9hjreusyfkh6wd3e2ip.png)
⇒
![Arc = (90)/(90(4))(2\pi r)](https://img.qammunity.org/2021/formulas/mathematics/high-school/a51lrb0qymzsu1i8wett5q2csvz8q35lvm.png)
⇒
![Arc = (1)/(4)(2\pi r)](https://img.qammunity.org/2021/formulas/mathematics/high-school/d82euk1v6ytjlncvcfxekak6sdl6g0m0xq.png)
⇒
![Arc = (1)/(4)(Circumference)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7gyq8sr0pcm1kutmk1lb3i0jadcy731kih.png)
Therefore , Arc Length is 1/4th of the circumference .