67.2k views
4 votes
Find the solution to the differential equation dy/dx = cos(x) / y2 , where y(π/2) = 0.

1 Answer

4 votes

Answer:


y(x)=\sqrt[3]{sin(x)-3}

Step-by-step explanation:

The differential equation is:


(dy)/(dx)=(cos(x))/(y^2)

Separate variables:


y^2dy=cos(x)dx

Integrate both sides:


\int y^2dy= \int xcos(x)dx


(y^3)/(3)=sen(x)+C


y^3=3sin(x)+C'

Find C' using the inital condtion y(π/2) = 0


0=3sin(\pi /2)+C'\\\\0=3+C'\\ \\ C'=-3

Then,


y^3=3sin(x)-3\\ \\ \\ y=\sqrt[3]{sin(x)-3}\\ \\ \\ y(x)=\sqrt[3]{sin(x)-3}

User Stefano Palazzo
by
5.6k points