155k views
1 vote
Find the eigenvalues and eigenvectors of A geometrically over the real numbers ℝ. (If an eigenvalue does not exist, enter DNE. If an eigenvector does not exist, enter DNE in any single blank.) A = 0 −1 −1 0 (reflection in the line y = −x)

1 Answer

5 votes

Answer:


v_1=(1,1)\\v_2=(-1,1)

Explanation:

you have the matrix


A=\left[\begin{array}{cc}0&-1\\-1&0\end{array}\right]

to find the eigenvalues it is necessary to solve the determinant


|A-\lambda I|=0\\

thus, we have the polynomial and the eigenvalues


\lambda ^2-1=0\\\lambda_1=1\\\lambda_2=-1

and the eigenvectors


v_1=(1,1)\\v_2=(-1,1)

Hope this helps!

User Semsem
by
5.2k points