107k views
1 vote
If angle CED is 35 degrees and ADC is 50 degrees, what is the measure of angle DCE?

1 Answer

5 votes

Step-by-step explanation:

The diagram for this problem is shown below. We know some facts:


\angle CED=35^(\circ) \\ \\ \angle ADC=50^(\circ)

From the figure,
\angle ADE=180^(\circ), so we can write this relationship:


\angle ADC+\angle CDE=180^(\circ) \\ \\ \\ Isolating \ \angle CDE: \\ \\ \angle CDE=180^(\circ)-\angle ADC \\ \\ \\ Substituting \ angle ADC=50^(\circ) \\ \\ \angle CDE=180^(\circ)-50^(\circ) \\ \\ \angle CDE=130^(\circ)

Since C, E and D form a triangle, then the internal angles of any triangle add up to 180 degrees, so:


\angle CED + \angle EDC + \angle DCE=180^(\circ) \\ \\ \\ Substituting \ know \ values: \\ \\ 35^(\circ)+ 130^(\circ)+ \angle DCE=180^(\circ) \\ \\ \\ Isolating \ \angle DCE: \\ \\ \angle DCE=180^(\circ) -35^(\circ)-130^(\circ) \\ \\ \boxed{\angle DCE=15^(\circ)}

If angle CED is 35 degrees and ADC is 50 degrees, what is the measure of angle DCE-example-1
User Salgar
by
5.0k points