Answer:
Therefore F=2.387 hours gives a minimum value of energy expenditure E.
Explanation:
Given that,
The energy expended by a bird per day
![E=0.25 F+(1.7)/(F^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uz66xznqwqtcfl9o3reyu8n3nzqbrgdqau.png)
Differentiating with respect to F
![E'=0.25 -(3.4)/(F^3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/k9ughv1n2xe325drsbsap91523hnq5ehiv.png)
Again differentiating with respect to F
![E''=(10.2)/(F^4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7h3x432ult535xztyhidtrlqi7detd60vt.png)
Now set E'=0
![0.25 -(3.4)/(F^3)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/nkklravl8myw5ikjpzah48vo78rv4w2prj.png)
![\Rightarrow (3.4)/(F^3)=0.25](https://img.qammunity.org/2021/formulas/mathematics/high-school/z048xasi49srat2jq872fvpqz7ef862lzf.png)
![\Rightarrow F^3=(3.4)/(0.25)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ycczzwdc262clkkagmxm8otgmx9qch8v77.png)
![\Rightarrow F=2.387](https://img.qammunity.org/2021/formulas/mathematics/high-school/fuoh6ldl2tlk0gg3u1n08qqmaps1euhzf0.png)
Now
![E''|_(F=2.387)=(10.2)/(2.387^4)>0](https://img.qammunity.org/2021/formulas/mathematics/high-school/gig6q8xjg3bvoaj5p7ov52vymxfuntbpko.png)
Since, E''>0 at F=2.387, So at F=2.387 , E has minimum value.
Therefore F=2.387 hours that minimizes energy expenditure.