Answer:
Step-by-step explanation:
Given the following masses and coordinates
M1 = 3kg at x1 = (0,0)m
M2 = 1.4kg at x2 =(1,0)m
M3 = 4.2kg at x3 = (0, 6)m
M4 = 7kg at x4 = (x, y)m
General center of mass
Xcm=(0,0)
Center of mass is given as
Xcm = 1/M • Σ Mi•xi
M = m1+m2+m3+m4
M = 3+1.4+4.2+7
M = 15.6kg
(0,0) = 1/15.6•Σ Mi•xi
Cross multiply by 15.6
Then,
(0,0) = Σ Mi•xi
(0,0)=M1•x1 + M2•x2 + M3•x3+M4•x4
(0,0)=3(0,0) + 1.4(1,0)+ 4.2(0,6) + 7(x, y)
(0,0) = (0,0) + (1.4,0) + (0,25.56)+ (7x, 7y)
(0,0) = (0+1.4+0+7x, 0+0+25.56+7y)
(0,0) = (1.4+7x, 25.56+7y)
Comparing coefficient
1.4+7x = 0
7x = -1.4
x = -1.4/7
x = -0.2m
Also,
25.56 + 7y = 0
7y = - 25.56
y = -25.56/7
y = -3.65m
Then, the position of fourth mass is
(x, y) = (-0.2, -3.65) m