Given:
The coordinates of the point C is (-1,4) and the coordinates of the point D is (2,0).
We need to determine the distance between the points C and D
Distance between C and D:
The distance between the two points can be determined using the formula,
![d=\sqrt{\left(x_(2)-x_(1)\right)^(2)+\left(y_(2)-y_(1)\right)^(2)}](https://img.qammunity.org/2021/formulas/geography/high-school/vxu1yld0i09a1r7oekrm4h456t6e9ym0ra.png)
Let us substitute the coordinate (-1,4) and (2,0) for the coordinates
and
![(x_2,y_2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/afjoih3inj41891gm82w4t44k4qifaxvdd.png)
Thus, we have;
![d=\sqrt{\left(2+1\right)^(2)+\left(0-4\right)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/pkm2c6l48401x1czlzosg9ati1h9seye6e.png)
Simplifying, we get;
![d=\sqrt{\left(3\right)^(2)+\left(-4\right)^(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/3yl20aj7viky4koann33luoo1eerssa11p.png)
Squaring the terms, we have;
![d=√(9+16)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/4omorfix6f9a0qqsbll9o70n5m51txidm8.png)
![d=√(25)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5hd4qwntjv8mzwxlne5hk8g1tgx0uprdsk.png)
![d=5](https://img.qammunity.org/2021/formulas/mathematics/college/4rrto17gejft4rrcepjawz23szon8g87sf.png)
Thus, the distance between the points C and D is 5 units.