Answer:
![-(9)/(4)ft/s](https://img.qammunity.org/2021/formulas/physics/college/5n8yf0sxv4cynmce522b29r3uwfkggn7w4.png)
Step-by-step explanation:
We are given that
Length of ladder,z=10ft
Let x be the distance of bottom of ladder from the wall and y be the distance of the top of ladder from the bottom of wall.
![(dx)/(dt)=3ft/s](https://img.qammunity.org/2021/formulas/physics/college/cxxnk7coxq2v02g34rb9n1xzbbu97ma4b6.png)
We have to find the rate at which the top of the ladder sliding down the wall when the bottom of the ladder is 6ft from the wall.
i.e.x=6 ft
By Pythagoras theorem
![x^2+y^2=z^2](https://img.qammunity.org/2021/formulas/physics/college/mmvx5hu8ekvagtm5a1p4en2kfeu0f3hfvs.png)
![x^2+y^2=(10)^2=100](https://img.qammunity.org/2021/formulas/physics/college/yk7k3vi8yt1iwxwb2pri80acylegmjsic5.png)
![6^2+y^2=(10)^2=100](https://img.qammunity.org/2021/formulas/physics/college/4ncmakvk1fpmvpv14scsutifeuw594jb11.png)
![y^2=100-6^2=64](https://img.qammunity.org/2021/formulas/physics/college/ft2tqmav6oqlmvybt2pu4oivwvvj0mggwb.png)
![y=√(64)=8 ft](https://img.qammunity.org/2021/formulas/physics/college/9e70tbofr9ttigxartziy0id3sd6kf9eq4.png)
Differentiate w.r.t time
![2x(dx)/(dt)+2y(dy)/(dt)=0](https://img.qammunity.org/2021/formulas/physics/college/i2h998yo63c6ua7f4bvr472jwsxwssi1so.png)
![6* 3+8(dy)/(dt)=0](https://img.qammunity.org/2021/formulas/physics/college/983c7selkzm0epxmiaeuocw2phuownj24w.png)
![8(dy)/(dt)=-6* 3=-18](https://img.qammunity.org/2021/formulas/physics/college/v2yaj3v10v52o92risolq8lbjphq20x3qi.png)
![(dy)/(dt)=-(18)/(8)=-(9)/(4)ft/s](https://img.qammunity.org/2021/formulas/physics/college/mroudzk0b374p9ygkir9p6xz4e7psi3vai.png)