80.0k views
0 votes
A point on the terminal side of an angle theta in standard position is (negative 24 comma 10 ). Find the exact value of each of the six trigonometric functions of theta.

1 Answer

3 votes

Answer:


sin \theta=\frac5{13}


cos\theta=-(12)/(13)


tan\theta =-(5)/(12)


cec \theta=2(3)/(5)


sec\theta=-1\frac1{12}


cot \theta=-2(2)/(5)

Explanation:

Given point is (-24,10)

The distance between given point and the origin is


r=√(x^2+y^2)

Here r
=√((-24)^2+(10)^2)

=26 units.

x= -24 and y= 10

Now 6 trigonometric functions are


sin \theta=\frac yr=(10)/(26)=\frac5{13}


cos\theta=(x)/(r)=(-24)/(26)=-(12)/(13)


tan\theta =(y)/(x)=(10)/(-24)=-(5)/(12)


cec \theta= (r)/(y)=(26)/(10)=(13)/(5)=2(3)/(5)


sec\theta=\frac rx=(26)/(-24)=-(13)/(12)=-1\frac1{12}


cot \theta=(x)/(y)=(-24)/(10)=-(12)/(5)=-2(2)/(5)

User Jack Mills
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories