Answer:
a)
![P(4<X<5)= \int_(4)^5 0.4 e^(-0.4 x) dx = 0.4 \int_(4)^5 e^(-0.4 x) dx](https://img.qammunity.org/2021/formulas/mathematics/college/rdtksdwqj980ni2m52znfwhss0i1tquru1.png)
![P(4<X<5)= -e^(-0.4x) \Big|_4^5 = -e^(-0.4*5) + e^(-0.4*4) = -0.135+0.202=0.07 \approx 0.1](https://img.qammunity.org/2021/formulas/mathematics/college/km1cjews1goiu3yblx07yst4t99h7w0str.png)
b)
![P(0<X<4)= \int_(0)^4 0.4 e^(-0.4 x) dx = 0.4 \int_(0)^4 e^(-0.4 x) dx](https://img.qammunity.org/2021/formulas/mathematics/college/ls12kfa21pg9sgnsnjaojexefygd9p5rs5.png)
![P(0<X<4)= -e^(-0.4x) \Big|_0^4 = -e^(-0.4*4) + e^(-0.4*0) = -0.202+1=0.798 \approx 0.8](https://img.qammunity.org/2021/formulas/mathematics/college/jg4yba0u8mfcxacksyun4s5zv2o15ham3c.png)
c)
![P(X>4)= 1-P(X<4) = 1-P(0<X<4)=1-0.798 = 0.202\approx 0.2](https://img.qammunity.org/2021/formulas/mathematics/college/8tvyv8o2c4blgsjzsu6a1rw647eu7kb8t9.png)
Explanation:
For this case we define the random variable X who represent the duration of a call, in minutes, and the density function for X is given by:
![f(x) = 0.4 e^(-0.4 x)](https://img.qammunity.org/2021/formulas/mathematics/college/9i9gqmk1oxjpfwkucaoxa9mulwx8scv3aw.png)
Part a
For this case we want to find this probability:
![P(4<X<5)](https://img.qammunity.org/2021/formulas/mathematics/college/krhuvjwmhr3ph3lujo184udpfpqxjxbo3q.png)
And we can find this probability with this integral:
![P(4<X<5)= \int_(4)^5 0.4 e^(-0.4 x) dx = 0.4 \int_(4)^5 e^(-0.4 x) dx](https://img.qammunity.org/2021/formulas/mathematics/college/rdtksdwqj980ni2m52znfwhss0i1tquru1.png)
![P(4<X<5)= -e^(-0.4x) \Big|_4^5 = -e^(-0.4*5) + e^(-0.4*4) = -0.135+0.202=0.07 \approx 0.1](https://img.qammunity.org/2021/formulas/mathematics/college/km1cjews1goiu3yblx07yst4t99h7w0str.png)
Part b
![P(0<X<4)= \int_(0)^4 0.4 e^(-0.4 x) dx = 0.4 \int_(0)^4 e^(-0.4 x) dx](https://img.qammunity.org/2021/formulas/mathematics/college/ls12kfa21pg9sgnsnjaojexefygd9p5rs5.png)
![P(0<X<4)= -e^(-0.4x) \Big|_0^4 = -e^(-0.4*4) + e^(-0.4*0) = -0.202+1=0.798 \approx 0.8](https://img.qammunity.org/2021/formulas/mathematics/college/jg4yba0u8mfcxacksyun4s5zv2o15ham3c.png)
Part c
For this case we want this probability:
![P(X>4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4xq9xvhey6177v0ydt0jlzv5u00eywdl25.png)
And we can use the complement rule and the result from part b and we got:
![P(X>4)= 1-P(X<4) = 1-P(0<X<4)=1-0.798 = 0.202\approx 0.2](https://img.qammunity.org/2021/formulas/mathematics/college/8tvyv8o2c4blgsjzsu6a1rw647eu7kb8t9.png)