490,082 views
9 votes
9 votes
2. Find the general relation of the equation cos3A+cos5A=0

User Dmitry Bychenko
by
3.2k points

1 Answer

23 votes
23 votes

Answer:


A=(\pi)/(8)+(n\pi)/(4)or\ A=(\pi)/(2)+n\pi

Explanation:

Find angles


cos3A+cos5A=0

________________________________________________________

Transform the expression using the sum-to-product formula


2cos((3A+5A)/(2))cos((3A-5A)/(2))=0

________________________________________________________

Combine like terms


2cos((8A)/(2))cos((3A-5A)/(2))=0\\\\ 2cos((8A)/(2))cos((-2A)/(2))=0

________________________________________________________

Divide both sides of the equation by the coefficient of variable


cos((8A)/(2))cos((-2A)/(2))=0

________________________________________________________

Apply zero product property that at least one factor is zero


cos((8A)/(2))=0\ or\ cos((-2A)/(2))=0

________________________________________________________

Cos (8A/2) = 0:

Cross out the common factor


cos\ 4A=0

________________________________________________________

Solve the trigonometric equation to find a particular solution


4A=(\pi)/(2)or\ 4A=(3\pi)/(2)

________________________________________________________

Solve the trigonometric equation to find a general solution


4A=(\pi)/(2)+2n\pi \ or\\ \\ 4A=(3 \pi)/(2)+2n \pi\\ \\A=(\pi)/(8)+(n \pi)/(4\\)

________________________________________________________

cos(-2A/2) = 0

Reduce the fraction


cos(-A)=0

________________________________________________________

Simplify the expression using the symmetry of trigonometric function


cosA=0

________________________________________________________

Solve the trigonometric equation to find a particular solution


A=(\pi )/(2)\ or\ A=(3 \pi)/(2)

________________________________________________________

Solve the trigonometric equation to find a general solution


A=(\pi)/(2)+2n\pi\ or\ A=(3\pi)/(2)+2n\pi,n\in\ Z

________________________________________________________

Find the union of solution sets


A=(\pi)/(2)+n\pi

________________________________________________________

A = π/8 + nπ/4 or A = π/2 + nπ, n ∈ Z

Find the union of solution sets


A=(\pi)/(8)+(n\pi)/(4)\ or\ A=(\pi)/(2)+n\pi ,n\in Z

I hope this helps you

:)

User Dat Le Tien
by
2.5k points