71.7k views
1 vote
Let F = sin ( 8 x + 5 z ) i − 8 y e x z k . F=sin⁡(8x+5z)i−8yexzk. Calculate div ( F ) div(F) and curl ( F ) . and curl(F). (Express numbers in exact form. Use symbolic notation and fractions where needed.)

1 Answer

4 votes

Answer:

Required results are
\\abla .\vec{F}=8\cos(8x+5z)-8ye^x[/tex] and
\\abla* \vec{F}=-8e^xz\uvec{i}+(8ye^xz+5\sin(8x+5z))\uvec{j}

Explanation:

Given vector function is,


\vec{F}=\sin(8x+5z)\uvec{i}-8ye^xz\uvec{k}

To find
\\abla .\vec{F} and
\\abla * \vec{F} .


\\abla .\vec{F}


=((\partial)/(\partial x)\uvec{i}+(\partial)/(\partial y) \uvec{j}+(\partial)/(\partial z) \uvec{k})(\sin(8x+5z)\uvec{i}-8ye^xz\uvec{k})


=(\partial)/(\partial x)(\sin(8x+5z))-(\partial)/(\partial z)(8ye^xz)


=8\cos(8x+5z)-8ye^x

And,


\\abla * \vec{F}


=((\partial)/(\partial x)\uvec{i}+(\partial)/(\partial y) \uvec{j}+(\partial)/(\partial z) \uvec{k})*(\sin(8x+5z)\uvec{i}-8ye^xz\uvec{k})


\end{Vmatrix}


=\uvec{i}\Big[(\partial)/(\partial y)(-8ye^xz)\Big]-\uvec{j}\Big[(\partial)/(\partial x)(-8ye^xz)-(\partial)/(\partial z)(\sin(8x+5z))\Big]+\uvec{k}\Big[-(\partial)/(\partial y)(-\sin(8x+5z))\Big]


=-8e^xz\uvec{i}+(8ye^xz+5\sin(8x+5z))\uvec{j}

Hence the result.

User Ndequeker
by
7.5k points