Answer:
We are 99% confident interval for the population proportion of passing test scores between ( 0.5987 and 0.9413 )
Explanation:
Given -
n = 40
Population proportion =
=
= .77
1 -
= 1 - .77 =.23
= 1 - confidence interval = 1 - .99 = .01
=
= 2.58
99% confidence interval for the population proportion of passing test scores=
![\widehat{(p)}\pm z_{(\alpha)/(2)} \sqrt{\frac{\widehat{(p)} (1 - \widehat{p})}{n}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/n5naa9gspxtcbq0v1b0g2orn4bsczam8ol.png)
=
![.77\pm z_{(.01)/(2)} \sqrt{\frac{{(.77)} (.23)}{40}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ips9l28fw4z0ancvyfk9ig6s13ctmf41fg.png)
=
![.77\pm 0.1713](https://img.qammunity.org/2021/formulas/mathematics/high-school/3olczq4dmbxfjmrln00owd1cb93p13g3ma.png)
=
![(.77 + 0.1713 , .77 - 0.1713)](https://img.qammunity.org/2021/formulas/mathematics/high-school/u9ik5wt6dwtbdtdjg3urx1uk1oe4e7lae3.png)
= ( 0.5987 , 0.9413 )