Answer:
Maximum speed for a point on the string at anti node will be 22.6 m/sec
Step-by-step explanation:
We have given length of string L = 3.5 m
For 7th harmonic length of the string
![L=(7\lambda )/(2)](https://img.qammunity.org/2021/formulas/physics/college/sqk57pwvpurflfx0q3pueskmk0va6p7iuh.png)
So
![\lambda =(2L)/(7)](https://img.qammunity.org/2021/formulas/physics/college/xtxqzfy4sog91waiyvq9vhne0dynlyzr4m.png)
Speed of the wave in the string is 150 m/sec
Frequency corresponding to this wavelength
![f=(v)/(\lambda )=(7v)/(2L)](https://img.qammunity.org/2021/formulas/physics/college/ibtjh4fzo0883iscauiwxbxpwcb6o2fv7y.png)
So angular frequency will be equal to
![\omega =2\pi f=2\pi * (7v)/(2L)=2* 3.14* (7* 150)/(2* 3.5)=942rad/sec](https://img.qammunity.org/2021/formulas/physics/college/wcq43aopqbq3unyhk1si42s3u2g90lxdkf.png)
Maximum speed is equal to
![v_m=A\omega =0.024* 942=22.60m/sec](https://img.qammunity.org/2021/formulas/physics/college/maep7ivg6hnzh6we9ajfruxivlvkqdoxpr.png)
So maximum speed for a point on the string at anti node will be 22.6 m/sec