103k views
2 votes
Use a half-angle identity to find the exact value

Use a half-angle identity to find the exact value-example-1
User Alex Wulff
by
4.3k points

1 Answer

5 votes

Given:


\cos 15^(\circ)

To find:

The exact value of cos 15°.

Solution:


$\cos 15^(\circ)=\cos( 30^(\circ))/(2)

Using half-angle identity:


$\cos \left((x)/(2)\right)=\sqrt{(1+\cos (x))/(2)}


$\cos (30^(\circ))/(2)=\sqrt{(1+\cos \left(30^(\circ)\right))/(2)}

Using the trigonometric identity:
\cos \left(30^(\circ)\right)=(√(3))/(2)


$=\sqrt{(1+(√(3))/(2))/(2)}

Let us first solve the fraction in the numerator.


$=\sqrt{((2+√(3))/(2))/(2)}

Using fraction rule:
((a)/(b) )/(c)=(a)/(b \cdot c)


$=\sqrt{\frac {2+√(3)}{4}}

Apply radical rule:
\sqrt[n]{(a)/(b)}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}


$=\frac{\sqrt{2+√(3)}}{√(4)}

Using
√(4) =2:


$=\frac{\sqrt{2+√(3)}}{2}


$\cos 15^\circ=\frac{\sqrt{2+√(3)}}{2}

User Mtflud
by
4.5k points