Answer:

Explanation:
step 1
Simple interest
we know that
The simple interest formula is equal to
where
A is the Final Investment Value
P is the Principal amount of money to be invested
r is the rate of interest
t is Number of Time Periods
in this problem we have
substitute in the formula above

step 2
Interest compounded annually
we know that
The compound interest formula is equal to
where
A is the Final Investment Value
P is the Principal amount of money to be invested
r is the rate of interest in decimal
t is Number of Time Periods
n is the number of times interest is compounded per year
in this problem we have
substitute in the formula above

step 3
Find the differences between the two final amounts
