Given that the radius of the circle is 6 cm.
The central angle is 120°
We need to determine the length of AB.
Length of AB:
The length of AB can be determined using the formula,
![{arc \ length}=2 \pi r\left((\theta)/(360)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/eue9v9rcwe91m3gr0q5d0hsfjgsleko9ta.png)
Substituting
and
in the above formula, we get;
![arc\ length}=2 \pi (6)\left((120)/(360)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pdpjbxahntzsfvf80p5p78wzo3qrz4k1py.png)
Simplifying the values, we get;
![arc\ length}=2 \pi (6)\left((1)/(3)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wh15suo2r6uhl6gzm0kqmhr709xaxdw9v7.png)
![arc\ length}=12 \pi \left((1)/(3)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/x6n7qtpltm0az0qa43x6vk160uigz4t0j6.png)
![arc\ length}=4 \pi](https://img.qammunity.org/2021/formulas/mathematics/high-school/fgmqpw12068qdi5ibv0v72fhtfjjozo53w.png)
Substituting π = 3.14, we have;
![arc\ length}=4(3.14)](https://img.qammunity.org/2021/formulas/mathematics/high-school/j3tt8yd1aq37naqqhf9g1cc7vq73wz24zm.png)
![arc\ length}=12.56](https://img.qammunity.org/2021/formulas/mathematics/high-school/d59xcubq5z9hl8i8swmykc71op0k7st1sn.png)
Thus, the arc length of AB is 12.56 cm