20.1k views
4 votes
How many randomly selected employers must we contact in order to create an estimate in which we are 95​% confident with a margin of error of 9​%? ​b) Suppose we want to reduce the margin of error to 4​%. What sample size will​ suffice? ​c) Why might it not be worth the effort to try to get an interval with a margin of error of 1​%?

1 Answer

2 votes

Answer:

a)n=543

b)n=1509

c)n=13573

Explanation:

a)

c=98%,


E=0.05

Margin Error
E=Zα/2√p(1-p)/n

but
n=((Zα/2)/n)²×p(1-p)

where the confidence level is 1-α=0.98

cross multiply


Zα/2=2.33

where p=0.5

input the values


n=(2.33/0.55)²×0.5(1-0.5)=543

n=0.33

b) E=0.33


E=Zα/2√p(1-p)/n


n=((Zα/2)/n)²×p(1-p)


1-α=0.01 confidence level

n=(2.33/0.33)²×0.5(1-0.5)=1504


n=1504

c)
E=Zα/2√p(1-p)/n


n=((Zα/2)/n)²×p(1-p)

1-α=0.98

cross multiply

Zα/2=2.33

p=0.5

n=(2.33/0.01)²×0.5(1-0.5)=13573


n=13573

User Facundomr
by
3.7k points