Answer:
The charge of each charge is

Step-by-step explanation:
When yo have two charged particles they interact exerting an electrostatic force in the other particles, the magnitude of the electrostatic force between two particles is:
(1)
with q1 and q2 the charges, r the distance between them and k the Coulomb's constant (
)
Because the charges we're dealing are identical positive q1=q2, then (1) is:

Using the values the problem give us:

solving for q:

