Option B:
ASA congruence
Solution:
Step 1: Given
![\overline{Q S} \perp \overline{Q T}](https://img.qammunity.org/2021/formulas/mathematics/high-school/isrspi6rftp727xl6see1u3bkolsilmw6c.png)
Step 2: Given
![\overline{R T} \perp \overline{R S}](https://img.qammunity.org/2021/formulas/mathematics/high-school/p18yml03gcfrhv8cvkwulewxzrqo6itg2u.png)
Step 3: Given
(Included side)
Step 4: All right angles are congruent.
(Angle)
Step 5: By vertical angle theorem
(Angle)
Step 6: By ASA congruence
QU and RU are included side of corresponding angles.
Therefore by ASA congruence rule,
![\Delta Q T U \cong \Delta R S U](https://img.qammunity.org/2021/formulas/mathematics/high-school/yypwze9z1tyo4spfxju2zv7avjvthnt3xc.png)
Option B is the correct answer.
Hence proved.