Answer:
(a) Period = 0.436 s, frequency = 2.29 Hz
(b) 0.157 m
(c) 32.6 m/s²
(d) 2.26 J
(e) 1.91 J
Step-by-step explanation:
This is s simple harmonic motion in the form of a loaded spring. The initial velocity is the maximum velocity because the maximum velocity occurs at the equilibrium point.
Given:
Mass, m = 885 g = 0.885 kg
Spring constant, k = 184 N/m
Maximum velocity,
= 2.26 m/s
(a) Period, T, is given by:
![T=2\pi\sqrt{(m)/(k)}](https://img.qammunity.org/2021/formulas/physics/high-school/il15vawk5y6j3k5kc24wbaa7mkaxtp7746.png)
![T=2\pi\sqrt{\frac{0.885 \text{ kg}}{184\text{ N/m}}} = 0.436 \text{ s}](https://img.qammunity.org/2021/formulas/physics/college/xg1zobcfo0xii181d6a9yiwphp2adyobl3.png)
Frequency, f, is given by
![f= (1)/(T) = \frac{1}{0.436\text{ s}} = 2.29\text{ Hz}](https://img.qammunity.org/2021/formulas/physics/college/isp0it1uqv6r2l09e2waqn72sedrg41zg0.png)
(b) The maximum velocity is related to the amplitude by
![v_m=\omega A](https://img.qammunity.org/2021/formulas/physics/college/q31te9rvn01827jon1kzut5t91vlhr3hcz.png)
where A is the amplitude ω is the angular velocity and is given by
![\omega=2\pi f = \sqrt{(k)/(m)}](https://img.qammunity.org/2021/formulas/physics/college/lrzjza09mt5mlkdvg09np0478zoftlpj4u.png)
![A = (v_m)/(2\pi f) = \frac{2.26\text{ m/s}}{2\pi*2.29\text{ Hz}} = 0.157\text{ m}](https://img.qammunity.org/2021/formulas/physics/college/4394944tpv1rv0zv35ivzhgdz5wk5xvv64.png)
(c) Maximum acceleration is given by
![a = \omega^2A = (k)/(m)A](https://img.qammunity.org/2021/formulas/physics/college/ajt81nfcxq2adu79tapcovaircrsouzif4.png)
![a = \frac{184\text{ N/m}}{0.885\text{ kg}}*0.157\text{ m} = 32.6\text{ m/s}^2](https://img.qammunity.org/2021/formulas/physics/college/98d1gg3k5jcbgra2v7n5hn0ux9tmxg6vzq.png)
(d) Because the total energy is equal at any time, we determine the energy at equilibrium.
At equilibrium, displacement is 0 m and velocity is maximum. Hence, the potential energy is 0 J and the kinetic is maximum which is determined thus:
![KE_\text{max} = (1)/(2)mv_m^2 = (1)/(2)(0.885\text{ kg})(2.26 \text{ m/s})^2 = 2.26\text{ J}](https://img.qammunity.org/2021/formulas/physics/college/cwya2i240f8pwb0db4g964ou73uacmph5t.png)
The maximum energy is 2.26 J.
(e) The velocity at any point is
![v = \omega√(A^2 - x^2)](https://img.qammunity.org/2021/formulas/physics/college/zt7vhl359dwxxdp73v10rr8ryo9r052kqo.png)
At point x = 4A,
![v = \omega√(A^2 - (0.4A)^2) = \omega√(0.84A^2) = \omega A√(0.84)](https://img.qammunity.org/2021/formulas/physics/college/q8q59araxd2mv72u8nmmxdzlbapdee4as3.png)
Putting the values of A and ω,
![\omega = \sqrt{(k)/(m)} = 14.42\text{ rad/s}](https://img.qammunity.org/2021/formulas/physics/college/vcuohaxq1jz077zrfjz039gxawqw2v7bpf.png)
![v = (14.42\text{ rad/s})(\text{0.157 m})√(0.84) = 2.075\text{ m/s}](https://img.qammunity.org/2021/formulas/physics/college/jyjf8rinaz5rc528kuv1vzjgh4jdmtn1lo.png)
The kinetic energy is
![KE = (1)/(2)mv^2 = (1)/(2)(0.885\text{ kg})(2.075\text{ m/s})^2 = 1.91\text{ J}](https://img.qammunity.org/2021/formulas/physics/college/i3auce3aj77jzsfcfp3e4tbegkomubs0gt.png)