Answer:
Probability that
is at least 160 is 0.0127
Explanation:
Probability that
is at least 160
![P(X_(90) \geq 160) = 1 - P(X_(90)\leq160)](https://img.qammunity.org/2021/formulas/mathematics/college/z1788812d67cj9fdcdlhghceas0zgsmmb6.png)
![P(X_(90)\leq160) = P((X_(90)- \mu )/(\sigma)\leq (160- \mu )/(\sigma))](https://img.qammunity.org/2021/formulas/mathematics/college/v0wza0hhbdwhziigty8kfeq2w1nab9cv7w.png)
![Probability = (number of possible outcomes)/(number of total outcomes)](https://img.qammunity.org/2021/formulas/mathematics/college/uqie1b2c92n9rrxf5zoo9rmqmvfb3pcnfe.png)
Probability that she rolls 1 or 2 i.e. probability that she takes one step to the right:
P(X=1) = 2/6 = 1/3
Probability that she rolls 3,4,5,6 i.e. Probability that she takes two steps to the right:
P(X=2) = 4/6 = 2/3
![\mu = E(X) = \sum xP(X)\\](https://img.qammunity.org/2021/formulas/mathematics/college/lbwvhdznuff6ci91n4tgl70eummijpp75c.png)
when x = 1,2
![\mu = E(X) = (1*(1)/(3) )+(2*(2)/(3) )](https://img.qammunity.org/2021/formulas/mathematics/college/qa0uzpc1uxhkc6hy4ecmt9kq7iv4pcebnl.png)
![\mu = (5)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/eec62uitos4y468vwjrhvczcfn9aelcrfy.png)
The mean value after n flips
![\mu_(90) = (5)/(3) * 90\\\mu_(90) = 150](https://img.qammunity.org/2021/formulas/mathematics/college/io1xxxa4z932xyss1w06d4awymu43lboak.png)
For the standard deviation:
![\sigma_(90) =\sqrt{ [E(x^(2)) -((E(x))^(2) ]*90} \\\sigma_(90) =\sqrt{ [(1^(2)*(1)/(3))+(2^(2)*(2)/(3) ) -((5)/(3)) ^(2) ]*90}](https://img.qammunity.org/2021/formulas/mathematics/college/l8soi6atqilpxfqsdvr5d6a157rrg2rqcl.png)
![\sigma_(90) = \sqrt{(3-(25)/(3))*90 } \\\sigma_(90) = 4.47](https://img.qammunity.org/2021/formulas/mathematics/college/pyme6r3z31qrh629m0oikccrtwrrerw4j2.png)
![P(X_(90)\leq160) = P(Z\leq (160- 150 )/(4.47))](https://img.qammunity.org/2021/formulas/mathematics/college/q4i9scvnzd4oexiq3svkcbahhtyu0q4l27.png)
Where Z =
![(X_(90)- \mu )/(\sigma)](https://img.qammunity.org/2021/formulas/mathematics/college/6ic33a27rlpr45en8tmqrwgfivjhbljfr4.png)
= 0.9873
![P(X_(90) \geq 160) = 1 - 0.9873\\P(X_(90) \geq 160) =0.0127](https://img.qammunity.org/2021/formulas/mathematics/college/owy1lz9vby3ctnkmz7emo9aiu7a80kgg6n.png)