Answer:

Explanation:
We are given the following in the question:
Sample size, n = 67
Variance = 3.85
We have to find 80% confidence interval for the population variance of the weights.
Degree of freedom = 67 - 1 = 66
Level of significance = 0.2
Chi square critical value for lower tail =

Chi square critical value for upper tail =

80% confidence interval:

Putting values, we get,

Thus, (3.13,4.91) is the required 80% confidence interval for the population variance of the weights.