AX = b or
![\left[\begin{array}{cc}1&1\\0.1&0.05\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}15\\1.10\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/o5jwaz4nkkl27dsa9exfa15xlz697pd4mi.png)
The above matrix can be used to determine the number of dimes x and nickels y.
Explanation:
Here, total number of coins = 15
Let us assume the number of dimes = x
Also, let us assume the number of nickels = y
So, x + y = 15 .... (1)
Again, 1 dime = $0.1
So, x dimes = x ($0.1) = $ (0.1 x)
1 nickel = $0.05
So, y nickels = y ($0.05) = $ (0.05 y)
Also, total value of coins = $1.10
⇒ 0.1 x + 0.05 y = 1.10 .... (2)
So, from (1) and (2) the matrix can be written as:
AX = b or
![\left[\begin{array}{cc}1&1\\0.1&0.05\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}15\\1.10\end{array}\right]](https://img.qammunity.org/2021/formulas/mathematics/high-school/o5jwaz4nkkl27dsa9exfa15xlz697pd4mi.png)
The above matrix can be used to determine the number of dimes x and nickels y.