Solutions of
in the interval from [0,2pi) is
and
.
Explanation:
Find all solutions in the interval from [0,2pi)
![2cos(3x)= -√(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/faokrh1m0ablp2x87i4zgr3wr00w2br11h.png)
⇒
![2cos(3x)= -√(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/faokrh1m0ablp2x87i4zgr3wr00w2br11h.png)
⇒
![(2cos(3x))/(2)= (-√(2))/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j635ttkb7zd80z7p18rrczu696cg8lcwqc.png)
⇒
![cos3x= \frac{-√(2)(√(2))}{2{√(2)}}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/hh2ce3mg3j7p7tp1tea8g1kmc03ol0ns80.png)
⇒
![cos3x= \frac{-2}{2{√(2)}}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/znavz50wumb5zepxtks1pwunvcmx9mryde.png)
⇒
![cos3x= \frac{-1}{{√(2)}}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bhoktw1a1940ttbb5p749wxgv5o1xjqzdq.png)
⇒
![cos^(-1)(cos3x)= cos^(-1)(\frac{-1}{{√(2)}})](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vx612f5jlinz5iis8te9z7ztb6hcoj8met.png)
⇒
![3x=\pm (\pi)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8mm5oz75soizu2r8yp0y2gq9b5p2cateoy.png)
⇒
![x=\pm (\pi)/(12)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xo87r1xlp9sgiwz9ghdaohcza77zeam8np.png)
Cosine General solution is :
![x = \pm cos^(-1)(y)+ 2k\pi](https://img.qammunity.org/2021/formulas/mathematics/middle-school/fdg8rrwny3t37pmqo455letfw64otduzhg.png)
⇒
, k is any integer .
At k=0,
⇒
,
At k=1,
⇒
![x = - (\pi)/(12)+ 2\pi](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tlgh3rgl7b000w85pw1px0sd44hizmp030.png)
⇒
![x = (23\pi)/(12)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nq2zhpur1oh2bgblkvau717bauhwocza17.png)
Therefore , Solutions of
in the interval from [0,2pi) is
and
.