Answer:
The largest rectangle of perimeter 182 is a square of side 45.5
Explanation:
Maximization Using Derivatives
The procedure consists in finding an appropriate function that depends on only one variable. Then, the first derivative of the function will be found, equated to 0 and find the maximum or minimum values.
Suppose we have a rectangle of dimensions x and y. The area of that rectangle is:
![A=x.y](https://img.qammunity.org/2021/formulas/mathematics/college/b63qu8dx69qbmewnqs852bho8jpnbqd0gh.png)
And the perimeter is
![P=2x+2y](https://img.qammunity.org/2021/formulas/mathematics/middle-school/dyb2vxclqf8932kkeo3qs19mmq1ii1n08h.png)
We know the perimeter is 182, thus
![2x+2y=182](https://img.qammunity.org/2021/formulas/mathematics/college/2jy1qgigrr28nkwx6ib41tc5rm95a3n4mw.png)
Simplifying
![x+y=91](https://img.qammunity.org/2021/formulas/mathematics/college/tm75o2kk4pm4e31kdjx604hnxq2k9kgbh9.png)
Solving for y
![y=91-x](https://img.qammunity.org/2021/formulas/mathematics/college/qvet4hrb2n7d64a5ffw4rc3djw9xo3gdgh.png)
The area is
![A=x.(91-x)=91x-x^2](https://img.qammunity.org/2021/formulas/mathematics/college/wtzgygeda2k18kdf1nw3xct1zloa3edgzn.png)
Taking the derivative:
![A'=91-2x](https://img.qammunity.org/2021/formulas/mathematics/college/psvuslr9n92dntvz4n2dj5r2c6dhtyvjoc.png)
Equating to 0
![91-2x=0](https://img.qammunity.org/2021/formulas/mathematics/college/xlxuq00niwcs9sge0dzlywxr7m5ub07du4.png)
Solving
![x=91/2=45.5](https://img.qammunity.org/2021/formulas/mathematics/college/7v0hi33apeeew2mo43vr343owqo6clk3lm.png)
Finding y
![y=91-x=45.5](https://img.qammunity.org/2021/formulas/mathematics/college/gb20yk4a7pbskyhaxdr8fasvq707djt0hb.png)
The largest rectangle of perimeter 182 is a square of side 45.5