Answer:
b:1:4
Step-by-step explanation:
We are given that two solenoid.
Suppose ,the length of each solenoid=l
Cross-sectional area of each solenoid=A
Let , number of turns in in second solenoid,
![N_2=N](https://img.qammunity.org/2021/formulas/physics/college/n1ep79k7w5ddmc5k3fgufzhtek2xk3tfrk.png)
Number of turns in first solenoid,
![N_1=2 N](https://img.qammunity.org/2021/formulas/physics/college/56q3vhish6ge2zco6i8k12dikrpb4v2hhw.png)
We have to find the ratio of self-inductance of the second solenoid to that of the first.
Self- inductance,L=
![(\mu_0N^2A)/(l)](https://img.qammunity.org/2021/formulas/physics/college/86plab12x0zypuqidljnp9x6yjvptdn1gj.png)
Using the formula
Self- inductance of one solenoid,
![L_1=(\mu_0(2N)^2A)/(l)=(\mu_04N^2A)/(l)](https://img.qammunity.org/2021/formulas/physics/college/hd2i90qae9aafnd80oq63tc27jgwaj22sf.png)
Self-inductance of second solenoid,
![L_2=(\mu_0N^2A)/(l)](https://img.qammunity.org/2021/formulas/physics/college/2qblva0r5ftpeekq83w1afj7cqfgba925w.png)
![(L_2)/(L_1)=(N^2)/(4N^2)=(1)/(4)](https://img.qammunity.org/2021/formulas/physics/college/b8j08ofuvehzx0hi4bcp7nuqhresp6lj7o.png)
![L_2:L_1=1:4](https://img.qammunity.org/2021/formulas/physics/college/9lkca3wfcn1cdjdvg714er0b9v5jars5t1.png)
Hence, option b is true.