Answer:
a: 1
b: 4.5x10⁻⁴
c: 1.125x10⁻⁶
[H₃O⁺] = 0.000859M
Step-by-step explanation:
As HNO₂ is a weak acid, its equilibrium in water is:
HNO₂(aq) + H₂O(l) ⇄ H₃O⁺(aq) + NO₂⁻(aq)
Equilibrium constant, ka, is defined as:
ka = 4.5x10⁻⁴ = [H₃O⁺] [NO₂⁻] / [HNO₂] (1)
Equilibrium concentration of each specie are:
[HNO₂] = 0.00250M - x
[H₃O⁺] = x
[NO₂⁻] = x
Replacing in (1):
4.5x10⁻⁴ = x × x / 0.00250M - x
1.125x10⁻⁶ - 4.5x10⁻⁴x = x²
0 = x² + 4.5x10⁻⁴x - 1.125x10⁻⁶
As the quadratic equation is ax² + bx + c = 0
Coefficients are:
a: 1
b: 4.5x10⁻⁴
c: 1.125x10⁻⁶
Now, solving quadratic equation:
x = -0.0013 → False answer, there is no negative concentrations.
x = 0.000859
As [H₃O⁺] = x; [H₃O⁺] = 0.000859M
I hope it helps!