The length of the arc is 31.92 units
Step-by-step explanation:
Given that the sector of a circle of radius 6 units.
The angle is given by
![\theta=305^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cron5ok2j3wzq6xr5tt0h9s1pyrfzqger1.png)
Arc length of the circle:
The arc length of the circle can be determined using the formula,
![\ {arc\ length}=2 \pi r\left((\theta)/(360)\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ch9sbdrtvpp9umn8jwqkfsrunuakbvtvck.png)
where r = 6 and
![\theta=305^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cron5ok2j3wzq6xr5tt0h9s1pyrfzqger1.png)
Substituting the values, we have,
![\ {arc\ length}=2 \pi (6)\left((305)/(360)\right)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ti56rk5bgwkze5o1p0gskjhu7clqrf5ybu.png)
Multiplying the numerator, we have,
![\ {arc\ length}=(3660 \pi)/(360)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/bu1579ajtelp7thohm593i8czwyq5nqwcu.png)
Substituting
, we have,
![\ {arc\ length}=(3660(3.14))/(360)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gnkthbmho93xoez5ttybj37ha48kyln6qc.png)
Multiplying the terms, we get,
![\ {arc\ length}=(11492.4)/(360)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/uaroqrzvq57x3t71hwc58jbsns0lly61jn.png)
Dividing, we get,
![\ {arc\ length}=31.92 \ units](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3nqqa7v6l9wikicb69svz3qxre2lpz5xot.png)
Thus, the arc length of the circle is 31.92 units