Answer:
(-∞, ∞) or
![k \in \mathbb{R}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qp2qx1bnftqvtm5sfjzbinoe9uhwtt91iz.png)
Explanation:
Binomial: two terms connected by a plus or minus sign.
Discriminant
![b^2-4ac\quad\textsf{when}\:ax^2+bx+c=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/ku2btl8idftsr3jj7mteoe7eleri3tfk7z.png)
![\textsf{when }\:b^2-4ac > 0 \implies \textsf{two real roots}](https://img.qammunity.org/2023/formulas/mathematics/high-school/bemgetmu8gq7ewgi8mz1aci7d7xdwkp70s.png)
![\textsf{when }\:b^2-4ac=0 \implies \textsf{one real root}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h9jji031zzkf1l9um9zrdqkup06w57wi7f.png)
![\textsf{when }\:b^2-4ac < 0 \implies \textsf{no real roots}](https://img.qammunity.org/2023/formulas/mathematics/high-school/hps2jsx0en49x6jj16wq5ss16ajds9bzdp.png)
If a quadratic expression factors into two binomials, it will have two real roots. Therefore, the discriminant will be greater than zero.
Given quadratic expression:
![3x^2+kx-8](https://img.qammunity.org/2023/formulas/mathematics/high-school/qoqbbr117gu9jvccj5z8u4mb8y27dbi0dz.png)
![\implies a=3, \quad b=k, \quad c=-8](https://img.qammunity.org/2023/formulas/mathematics/high-school/r6c7aqt13ebl9fc12hzx4eiq77rakf0wtw.png)
Substitute the values of a, b and c into the discriminant, set it to > 0:
![\implies k^2-4(3)(-8) > 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/j7twpb8gfi8xyn62rwur10dkr6fkpl1avd.png)
![\implies k^2+96 > 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/2eqjctey2kplad1cwhds7bkqafkdl5na6x.png)
As k² ≥ 0 for all real numbers,
![\implies k^2+96 \geq 96](https://img.qammunity.org/2023/formulas/mathematics/high-school/vi6ilmsimkd32j2fd0rz97jzfvp9mh24at.png)
Therefore, the values of k are (-∞, ∞) or
![k \in \mathbb{R}](https://img.qammunity.org/2023/formulas/mathematics/high-school/qp2qx1bnftqvtm5sfjzbinoe9uhwtt91iz.png)