121k views
3 votes
*SAT QUESTION*

In triangle ABC, the measure of ∠B is 90°, BC=16, and AC=20. Triangle DEF is similar to triangle ABC, where vertices D, E, and F correspond to vertices A, B, and C, respectively, and each side of triangle DEF is
(1)/(3) the length of the corresponding side of triangle ABC. What is the value of sinF?

2 Answers

7 votes

Answer:

0.6

Step-by-step explanation:

Angle F corresponds to Angle C

sinF = sinC

AC² = AB² + BC²

20² = AB² + 16²

AB² = 400 - 256

AB² = 144

AB = 12

sinC = AB/AC

sinC = 12/20

sinF = 0.6

User OmGanesh
by
5.0k points
4 votes

Answer and Explanation:


Greetings!


Let's~answer~your~question!


Triangle~ ABC ~is ~a ~right~ triangle~ with ~its~ right~ angle ~at ~B. ~Therefore,~AC\\is~ the~ hypotenuse~ of~ right~ triangle~ ABC,~ and~ AB ~and ~BC ~are~ the~ legs~ of~ right~\\ triangle ~ABC.


According~ to~ the~ Pythagorean ~theorem,


AB=√(20^2-16^2)=√(400-256)=√(144)=12


Since ~triangle~DE
F~is ~similar~ to~ triangle~ ABC,~ with~ vertex ~F ~corresponding~to~ vertex~ C,~ the~ measure\\ of~angle~ \angle F~equals~ the~ measure~ of~ angle~\angle C.


Therefore,~ sinF=sinC. ~From ~the~ side~ lengths~ of ~triangle~ ABC,


sinF=(opposite ~side)/(hypotenuse) =(AB)/(AC) =(12)/(20)=(3)/(5)


Therfore, ~sinF=(3)/(5)~or~0.6

User Elise Chant
by
3.9k points