179k views
5 votes
A gas mixture consists of 4 kg of O2, 5 kg of N2, and 7 kg of CO2. Determine (a) the mass fraction of each component, (b) the mole fraction of each component, and (c) the average molar mass and gas constant of the mixture.

User Ivy Evans
by
3.8k points

1 Answer

2 votes

Answer:

See explanation.

Step-by-step explanation:

Hello

(a) In this case, one uses the following formulas, which allow to compute the mass fraction of each component:
\% O_2=(m_(O_2))/(m_(O_2)+m_(N_2)+m_(CO_2))*100\%=(4kg)/(4kg+5kg+7kg)*100\%=25\%O_2\\\% N_2=(m_(N_2))/(m_(O_2)+m_(N_2)+m_(CO_2))*100\%=(5kg)/(4kg+5kg+7kg)*100\%=31.25\%N_2\\\% CO_2=(m_(CO_2))/(m_(O_2)+m_(N_2)+m_(CO_2))*100\%=(7kg)/(4kg+5kg+7kg)*100\%=43.75\%CO_2

(b) For the mole fractions, it is necessary to find all the components' moles by using their molar mass as shown below:


n_(O_2)=4kgO_2*(1kmolO_2)/(32kgO_2) =0.125kmolO_2\\n_(N_2)=5kgN_2*(1kmolN_2)/(28kgN_2) =0.179kmolN_2\\n_(CO_2)=7kgCO_2*(1kmolCO_2)/(44kgCO_2) =0.159kmolCO_2

Now, the mole fractions:


x_(O_2)=(n_(O_2))/(n_(O_2)+n_(N_2)+n_(CO_2))*100\%=(0.125kmolO_2)/(0.125kmolO_2+0.179kmolN_2+0.159kmolCO_2)*100\%=27\%O_2\\x_(N_2)=(n_(N_2))/(n_(O_2)+n_(N_2)+n_(CO_2))*100\%=(0.179kmolN_2)/(0.125kmolO_2+0.179kmolN_2+0.159kmolCO_2)*100\%=38.7\%N_2\\ x_(CO_2)=(n_(CO_2))/(n_(O_2)+n_(N_2)+n_(CO_2))*100\%=(0.159kmolCO_2)/(0.125kmolO_2+0.179kmolN_2+0.159kmolCO_2)*100\%=34.3\%CO_2

(c) Finally the average molar mass is computed considering the molar fractions and each component's molar mass:


M_(average)=0.27*32g/mol+0.387*28g/mol+0.343*44g/mol=34.57g/mol

And the gas constant:


Rg=0.082(atm*L)/(mol*K)*(1mol)/(34.57g)=0.00237(atm*L)/(g*K)

Best regards.

User Nicholaschris
by
4.1k points