Answer:
a)
![P(k,1)=(3^ke^(-3))/(k!)](https://img.qammunity.org/2021/formulas/mathematics/college/6cmvgnkntb3xd3wwho0mkgrth6c5y5gt83.png)
b) E(x)=12
c)
![P(x)=(12^xe^(-12))/(x!)](https://img.qammunity.org/2021/formulas/mathematics/college/a35qnohf252a0qcg1q6rke2nsny6qk0ifs.png)
d) 0.2240
e) 0.1144
f) 0.1171
Explanation:
a) The appropiate Poisson probability function (k events in t interval) is:
![r=3\,ev./t.p.\\\\\\P(k,t)=((rt)^ke^(-rt))/(k!) \\\\\\P(k,1)=(3^ke^(-3))/(k!)](https://img.qammunity.org/2021/formulas/mathematics/college/kbb41rlzw3qkc4hww48prntwdfucpq76w7.png)
b) In this case, t=4. The expected number of ocurrences is equal to the rate of events multiplied by the time periods:
![E(x)=r\cdot t=3\cdot 4=12](https://img.qammunity.org/2021/formulas/mathematics/college/c1lhnk40iuuwt2adrimb2jhm87fn5fgrng.png)
c) Probability function for 4 time periods.
![r=3\,,\, t=4\\\\\\P(k,t)=((rt)^ke^(-rt))/(k!) \\\\\\P(x)=(12^xe^(-12))/(x!)](https://img.qammunity.org/2021/formulas/mathematics/college/f04oixkmtzjd62jon742ckrkx6b723eku2.png)
d) Three occurrences in one time period
![P(3)=(3^3e^(-3))/(3!)= (27*0.0498)/(6)= 0.2240](https://img.qammunity.org/2021/formulas/mathematics/college/rvy7ifrcpbm811z9jkw9bk9x9aotxe08ii.png)
e) Twelve occurrences in four time periods
![P(12)=(12^(12)e^(-12))/(12!)= ( 54,782,414)/( 479,001,600)= 0.1144](https://img.qammunity.org/2021/formulas/mathematics/college/yboasyrm7nvesqv5wq0q3ltsscr47j1pzr.png)
f) Seven events in three time periods
![P(7,3)=(9^(7)e^(-9))/(7!)= ( 590.27)/(5040)= 0.1171](https://img.qammunity.org/2021/formulas/mathematics/college/3smln9ns2qchmfwbr5lnh53mps58za05i1.png)